Pearson Edexcel

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Level In Chemistry (WCH14)
Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022
Question paper log number P69507A
Publications Code WCH14_01_2201_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- \quad All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:
i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear
ii) select and use a form and style of writing appropriate to purpose and to complex subject matter
iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A (multiple choice)

Question Number	Correct Answer	Mark		
$\mathbf{1 (a)}$	The only correct answer is $\mathbf{B}\left(1 / 2 \mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{I}(\mathrm{g})\right)$	(1)		
	\mathbf{A} is incorrect because atomisation of an element is from its standard state and iodine is a solid			
	\mathbf{C} is incorrect because atomisation produces 1 mole of atoms and requires solid iodine		\quad	
:---				

Question Number	Correct Answer	Mark
$\mathbf{1 (b)}$	The only correct answer is A $\left(-298 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)
	C is incorrect because this value has had 28 added to -270 rather than subtracted from it D is incorrect because first electron affinity values are always exothermic and the wrong sign has been used for the enthalpy change of hydration	

Question Number	Correct Answer	Mark
$\mathbf{2}$	The only correct answer is $\mathbf{B}\left(-1650 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$	(1)
	\mathbf{A} is incorrect because this uses the wrong sign for the enthalpy change of solution	
\mathbf{C} is not correct because this uses only one mole of chloride ions		

Question Number	Correct Answer	Mark
$\mathbf{3 (a)}$	The only correct answer is A (the mole fraction of carbon dioxide)	(1)
	B is incorrect because the equilibrium will move to the left hand side so this will decrease	
C is not correct because the rate of both reactions will decrease at lower temperature		

Question Number	Correct Answer	Mark
$\mathbf{3 (b)}$	The only correct answer is C (0.474)	(1)
	A is incorrect because this answer divides the mole fraction of carbon dioxide by 2	
	B is incorrect because this answer divides the mole fraction of carbon monoxide by 2	
D is incorrect because this is the partial pressure of carbon monoxide		

Question Number	Correct Answer	Mark
$\mathbf{4}$	The only correct answer is $\mathbf{A}\left(\mathrm{dm}^{9} \mathrm{~mol}^{-3}\right)$ \mathbf{C} is incorrect because the units of concentration should be raised to the power of -3 not -2 not -2 D is incorrect because the units should be the reciprocal of concentration raised to the power of -3 not -2	(1)

Question Number	Correct Answer	Mark
$\mathbf{5}$	The only correct answer is D (phenolphthalein)	(1)
	\mathbf{A} is incorrect because the indicator needs a range contained between pH 8 and pH 11	
\mathbf{B} is incorrect because the indicator needs a range contained between pH 8 and pH 11		
\mathbf{C} is incorrect because the indicator needs a range contained between pH 8 and pH 11		

Question Number	Correct Answer	Mark
$\mathbf{6}$	The only correct answer is A (the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at $100^{\circ} \mathrm{C}$ than it is at $25^{\circ} \mathrm{C}$) B is incorrect because at higher temperatures more hydrogen ions are present \mathbf{C} is incorrect because the dissociation of water is endothermic D is incorrect because the dissociation of water is endothermic	(1)

$\left.\begin{array}{|l|l|c|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Correct Answer } & \text { Mark } \\ \hline \mathbf{7} & \text { The only correct answer is } \mathbf{C}\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{O}_{3}\right) & \text { (1) } \\ & \text { A is incorrect because there are } 16 \text { carbon atoms in ketoprofen } & \\ & \mathbf{B} \text { is incorrect because this answer has one hydrogen too few } \\ \text { D is incorrect because this answer assumes there is } 1 \text { hydrogen on each carbon in the benzene rings }\end{array}\right]$.

Question Number	Correct Answer	Mark
$\mathbf{8}$	The only correct answer is C (3)	(1)
	A is incorrect because there are three chiral centres	
B is incorrect because there are three chiral centres		
D is incorrect because there are three chiral centres		

Question Number	Correct Answer	Mark
$\mathbf{9}$	The only correct answer is D (propanone with HCN) A is incorrect because the product, 2-chlorobutane, is chiral and each enantiomer is formed in equal amounts B is incorrect because the product, 2-chlorobutane, is chiral and each enantiomer is formed in equal amounts \mathbf{C} is incorrect because the product, 2-hydroxybutanenitrile is chiral and each enantiomer is formed in equal amounts	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 0}$	The only correct answer is C (the reaction proceeds via a carbocation intermediate)	(1)
	A is incorrect because while it is true, it does not explain the observation	
B is incorrect because this would lead to only one enantiomer		
D is incorrect because while this is true, it does not explain the observation		

Question Number	Correct Answer	Mark
$\mathbf{1 1}$	The only correct answer is C (4)	(1)
	A is incorrect because there are 4 aldehydes with this molecular formula that are structural isomers	
	B is incorrect because there are 4 aldehydes with this molecular formula that are structural isomers	

Question Number	Correct Answer	Mark
$\mathbf{1 2 (a)}$	The only correct answer is $\mathbf{D}\left(\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{I} \mathrm{CHI} 3\right)$	(1)
	A is incorrect because $\mathrm{CH}_{3} \mathrm{l}$ is not formed in acidic conditions	
B is incorrect because $\mathrm{CH}_{3} \mathrm{COCl}_{3}$ is not formed in acidic conditions		
C is incorrect because $\mathrm{CH}_{3} \mathrm{l}$ is not formed in alkaline conditions		

Question Number	Correct Answer	Mark
$\mathbf{1 2 (b)}$	The only correct answer is C (2.5)	(1)
	A is incorrect because the value of the pH has been divided by 3	
	B is incorrect because the concentration of H^{+}ions has been multiplied by 3 rather than divided	

Question Number	Correct Answer	Mark
$\mathbf{1 3}$	The only correct answer is $\mathbf{D}\left(\mathrm{HOCH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right.$ hot acidified $\left.\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)$	(1)
	\mathbf{A} is incorrect because the compound \mathbf{w} is correct but LiAlH_{4} is a reducing agent	
B is incorrect because both the compound \mathbf{W} and reagent are incorrect		
\mathbf{C} is incorrect because the compound \mathbf{w} is the wrong compound		

Question Number	Correct Answer	Mark
$\mathbf{1 4}$	The only correct answer is $\mathbf{C}\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOOCH}_{2} \mathrm{CH}_{3}\right)$ \mathbf{A} is incorrect because this product could not be formed as compound \mathbf{Y} must have 4 carbon atoms and the ester \mathbf{Z} must be formed from ethanol	(1)
\mathbf{B} is incorrect because this product could not be formed as compound \mathbf{Y} must have 4 carbon atoms		
and the ester \mathbf{Z} must be formed from ethanol		
\mathbf{D} is incorrect because this product could not be formed as compound \mathbf{Y} must have 4 carbon atoms		
and the ester \mathbf{Z} must be formed from ethanol		

Question Number	Correct Answer	Mark
$\mathbf{1 5}$	The only correct answer is $\mathbf{B}\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}\right)$	(1)
	\mathbf{A} is incorrect because the alcohol formed would be $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}$	
\mathbf{C} is incorrect because no carboxylic acid is formed under these reaction conditions		
D is incorrect because the sodium salt of ethanoic acid would be formed		

Question Number	Correct Answer	Mark
$\mathbf{1 6}$	The only correct answer is B (forces of attraction to the liquid) A is incorrect because these do not affect passage through the stationary phase C is incorrect because this is not the main reason and does not directly affect passage through the stationary phase D is incorrect because these do not affect passage through the stationary phase	(1)

Question Number	Correct Answer	Mark
$\mathbf{1 7}$	The only correct answer is D (Liquid Solid)	(1)
	A is incorrect because high performance liquid chromatography has a liquid mobile phase	
	B is incorrect because high performance liquid chromatography has a liquid mobile phase	
C is incorrect because high performance liquid chromatography has a solid stationary phase		

(Total for Section $\mathbf{A}=\mathbf{2 0}$ marks)

Section B

Question Number	Answer		Additional Guidance	Mark
18(a)(i)	An answer that makes reference to the following points: - order with respect to H^{+}is 2 and order with respect to Br^{-}is 1 - (in experiments 1 and 2 the concentration of bromide ions and bromate ions remains constant) while the concentration of hydrogen ions doubles and rate quadruples (so hydrogen ion is order 2) - (in experiments 1 and 3) the concentration of bromate ions increases 1.5 times and the concentration of bromide ions doubles (whilst the concentration of hydrogen ions stays constant). Rate increases by 3 times (so bromide ion is order 1) - rate $=\mathrm{k}\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}$	(1) (1) (1) (1)	Accept $\left[\mathrm{H}^{+}\right]^{2}$ Accept [$\left.\mathrm{Br}^{-}\right]^{1} /\left[\mathrm{Br}^{-}\right]$ Allow mathematical solutions of ratios to give the order In experiments 3 and 4 the concentration of bromide ions halves and the concentration of hydrogen ions doubles (whilst the concentration of bromate ions doesn't change.) The rate doubles (so bromide ion is order 1.) ALLOW TE on incorrect orders deduced M2 and M3 can be given even if resulting orders are incorrect Allow annotations on table	(4)

Question Number	Answer	Additional Guidance	Mark
18(a)	An answer that makes reference to the following points: - expression for k rearranged - value of k (1) - units	Example calculation $\mathrm{k}=\frac{\text { rate }}{\left[\mathrm{BrO}_{3}^{-}\right]\left[\mathrm{Br}^{-}\right]\left[\mathrm{H}^{+}\right]^{2}}$ OR $\begin{aligned} & \mathrm{k}=\frac{2.01 \times 10^{-4}}{0.15 \times 0.25 \times 0.60^{2}} \\ & \mathrm{k}=0.014889 / 0.015 / 1.4889 \times 10^{-2} / 1.5 \times 10^{-2} \\ & \mathrm{dm}^{9} \mathrm{~mol}^{-3} \mathrm{~s}^{-1} \end{aligned}$ ALLOW TE on (a)(i) Allow units in any order Allow sec for seconds ALLOW use of other experimental data instead of experiment 4 IGNORE SF except 1SF Correct answer with no working scores (2) Correct answer with no working and correct units scores (3)	(3)

Question Number	Answer	Additional Guidance	Mark
18(b)	An answer that makes reference to the following points: - there are only 4 particles in the rate equation and 12 in the equation for the reaction OR collisions with more than 2 particles are unlikely	Accept the number of particles in the rate equation does not match the equation for the reaction Accept the chances of collisions of 3 / 4 / many particles is unlikely Do not accept other numbers of particles Accept comparison of numbers of particles of individual ions in the equation of the reaction and in the rate equation / order of reaction, e.g. $5\left[\mathrm{Br}^{-}\right]$in the equation but only 1 in the rate equation ALLOW molecules / ions / species / concentrations instead of particles ALLOW TE for comparison on (a)(i) and (a)(ii)	(1)

Question Number	Answer	Additional Guidance	Mark
19(a)(i)	An answer that makes reference to the following points: Step 1 - lone pair of electrons on C of $\mathrm{C} \equiv \mathrm{N}$ - curly arrow from anywhere on the C of $\mathrm{C} \equiv \mathrm{N}$ to C in propanal including the charge - curly arrow from $\mathrm{C}=\mathrm{O}$ bond to or just beyond O - dipole on $\mathrm{C}=\mathrm{O}$ Step 2 - Ione pair on O in intermediate Step 1 or Step 2 - curly arrow from the O (or minus charge) of intermediate to H of $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$ - curly arrow from $\mathrm{H}-\mathrm{C}$ bond to C of $\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	 All 7 points scores 4 marks 5 or 6 points scores 3 marks 3 or 4 points scores 2 marks 2 points scores 1 mark Ignore formula of products even if incorrect Ignore all dipoles on HCN Penalise dipoles on $\mathrm{C}-\mathrm{O}$ in the intermediate	(4)

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points: - the value of K_{a} / dissociation is (very) small / the equilibrium lies (very) well to the left - so the concentration of CN^{-}ions is (very) low / there is a lack of CN^{-}ions	(1) (1)	Allow it is a (very) weak acid Allow it is partially dissociated Allow a comment that all / most CN^{-}in the reaction come from KCN I gnore references to K_{a} of KCN Ignore references to rate of dissociation	(2)

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points: - (it increases the rate of reaction by) providing $\mathbf{C N}^{-}$ions in the same phase/state - and it / KCN / CN^{-}ion is regenerated in Step 2 (so overall is not used up in the reaction)	(1) (1)	Ignore incorrect phases Allow it is regenerated at the end (of the reaction) Ignore references to adsorbing and desorbing If no other mark is scored for it is in the same phase/state and is not used up (1) OR A homogeneous catalyst / KCN is in the same phase/state and speeds up the reaction/provides an alternative pathway with lower activation energy (1)	(2)

Question Number	Answer	Additional Guidance	Mark
19(b)	- a three-dimensional diagram of 2-hydroxybutanenitrile showing at least one dotted bond and at least one wedged bond which are next to each other - the mirror image of the first structure	Allow just a three dimensional diagram of 2hydroxybutanenitrile showing at least one dotted and one wedged bond Diagrams may show a mirror / plane of symmetry though this is not necessary Allow diagrams that swap two of the four substituents e.g. If not other marks are scored allow two tetrahedral structures which are mirror images that do not have wedged and dotted bonds scores (1)	(2)

I gnore connectivity errors

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to the following points: - $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}\right]}$	Accept $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}^{-}\right]$and [$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$] Accept $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] instead of [H^{+}] Accept other representations of the chain of hexanoic acid / hexanoate ion, such as [$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{COO}^{-}$] Ignore equation for dissociation Do not award $\left[\mathrm{H}^{+}\right]^{2} /\left[\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{COOH}\right]$ Do not award brackets that are not square brackets Do not award molecular formulae	(1)

Question Number	Answer		Additional Guidance	Mark
20(a)(ii)	- uses expression for pKa - use of K_{a} expression - rearrange and solve for H^{+} - find pH	(1) (1) (1) (1)	Example calculation $\begin{aligned} & \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pK}} / \mathrm{K}_{\mathrm{a}}=10^{-4.88} / \mathrm{pK}_{\mathrm{a}}=-\log _{10} \mathrm{~K}_{\mathrm{a}} / 4.88=-\log _{10} \mathrm{~K}_{\mathrm{a}} / \\ & \mathrm{K}_{\mathrm{a}}=0.000013183 / 1.3183 \times 10^{-5} \\ & 10^{-4.88} / 1.3183 \times 10^{-5} / 0.000013183=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.1} \\ & {\left[\mathrm{H}^{+}\right]=\sqrt{0.000013183 \times 0.1}=0.0011482 / 0.00115 / 1.1482 \times 10^{-3}} \\ & / 1.15 \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \end{aligned}$ Do not award M4 with units Final correct answer with no working scores (4) Final correct answer scores (4) Allow TE at each stage Omitting the square root gives 5.88 scores (3) Use of 4.88 for K_{a} gives 0.1558 scores (3) Ignore SF except 1 SF	(4)

Question Number	Answer		Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points: - hexanoic acid forms more hydrogen bonds (per molecule) with water than butyl ethanoate does - hexanoic acid has an -OH group which forms hydrogen bonds (with water) - butyl ethanoate / hexanoic acid has a $\mathrm{C}=\mathrm{O}$ group which forms hydrogen bonds (with water)	(1) (1) (1)	All marks may be scored with a diagram or diagrams Allow hexanoic forms two hydrogen bonds per molecule but butyl ethanoate forms only one I gnore references to the strength of the hydrogen bonds I gnore all references to other intermolecular forces	(3)

Question Number	Answer		Additional Guidance				Mark
20(b)(i)	- calculate mass of oxygen - divides masses by atomic mass - divides by smallest to find the simplest ratio and correct empirical formula (1)		Example calculation Mass of $\mathrm{O}=10-6.21-1.03=2.76(\mathrm{~g})$				(3)
			Element	C	H	0	
			Mass	6.21	1.03	2.76	
			Mass / Atomic Mass	$\begin{aligned} & 6.21 / 12= \\ & 0.5175 \end{aligned}$	$\begin{aligned} & 1.03 / 1= \\ & 1.03 \end{aligned}$	$\begin{aligned} & 2.76 / 16= \\ & 0.1725 \end{aligned}$	
			Ratio	3	6	1	
			$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$				
			Correct an scores (3) Do not aw I gnore SF	with mass/ $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ state	omic mass as empirica	ios calculated ormula	
			Ignore reference to $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$ after finding empirical formula				
			Allow 1 mark for CH_{2} deduced without finding the mass of oxygen				
			Allow max 1 mark for incorrect masses of oxygen divided correctly by atomic mass				

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 0 (b) (i i)}$	An answer that makes reference to the following points: - molecular ion peak / peak at highest mass will be at twice the mass of the empirical formula / will be at 116	Ignore references to n.m.r or i.r.	

Question Number	Answer	Additional guidance	Mark
20(b)(iii)	This question assesses a student's ability to show a coherent and logically structured answer with linkages and fully-sustained reasoning. Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content. The following table shows how the marks should be awarded for structure and lines of reasoning.	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages). In general, an answer with 5 or 6 IPs would score 2 reasoning marks, 3 or 4 IPs would score 1 reasoning mark, 0,1 or 2 IPs would score 0 reasoning marks.	(6)

		Number of marks awarded for structure of answer and sustained line of reasoning
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	

If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s)

I ndicative content

- IP1 Misty fumes suggest OH group present
- IP2 Orange precipitate suggests a carbonyl group is present (so no carboxylic acid, must be alcohol)
- IP3 (Negative) Benedict's / Fehling's reagent suggests no aldehyde group present / a ketone is present
- IP4 Acidified potassium dichromate(VI) suggests not a primary, a secondary alcohol or an aldehyde present
- IP5 Polarimetry indicates a chiral centre is present / it is a chiral molecule
- IP6 Structure of 3-hydroxy-3-methylpentan-2-one

Accept alcohol or carboxylic acid group present (must state both)

Accept ketone or aldehyde present (must state both
Ignore C=O is present

Accept just 'no oxidisable groups present / cannot be oxidised' in either IP3 or IP4 but not both

Allow tertiary alcohol is present Accept just no primary or secondary alcohol present
Ignore references to ketone and carboxylic acid giving no result

Ignore $\mathrm{S}_{\mathrm{N}} 2$
Allow 4 different groups on a carbon Allow optically active Allow contains a single enantiomer

Allow the correct name
Allow displayed or structural formula or combinations
Allow contractions such as $\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{5}-$

Question Number	Answer		Additional Guidance	Mark
20(c)	An answer that makes reference to the following points: - a structure containing two - OH groups - correct structure	(1) (1)	Do not award an -OH group and a -COOH group Award this mark even if the structure does not contain a ring of six atoms. Structure may be skeletal or displayed or a mixture, as long as it is clear. Allow, for example, a displayed formula with condensed CH_{2}. Ignore connectivity of - OH	(2)

(Total for Question 20 = 20 marks)

Question Number	Answer		Additional Guidance	Mark
21(a)(i)	- calculates moles of acid present in the mixture - calculates moles of ester and water present in the mixture - calculates moles of ethanol present in the mixture - expression for K_{c} and final answer	(1) (1) (1) (1)	Example calculation mol of acid $=\mathrm{mol}$ of $\mathrm{NaOH}=\frac{34.8}{1000} \times 2.50=0.087(\mathrm{~mol})$ mol of ester $=\mathrm{mol}$ of water $=0.2-0.087=0.113(\mathrm{~mol})$ mol of ethanol $=0.150-0.113=0.037$ If the expression for Kc is incorrect, e.g. no water, allow TE on M1-3 for example not calculating moles of water as well as ester $K_{c}=\frac{0.113 / \mathrm{V} \times 0.113 / \mathrm{V}}{0.087 / \mathrm{V} \times 0.037 / \mathrm{V}}=3.9668 / 4.0 \text { (no units) }$ OR $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]}=3.9668 / 4.0 \text { and statement that } \begin{gathered} \text { volumes cancel } \end{gathered}$ Do not penalise lack of square brackets in equilibrium expression Assumption that 0.087 is moles of acid used gives moles ethanol $=0.063$ moles ester $=$ water $=0.087$ $\mathrm{Kc}=1.0632$ scores $\max (3)$ Calculation of acid moles at equilibrium larger than acid moles at the start can score M4 only If no other mark is scored Award (1) for calculation of $0.087(\mathrm{~mol})$ however it is used, Ignore SF	(4)

Question Number	Answer		Additional Guidance	Mark
21(a)(ii)	An answer that makes reference to the following points: - same type of / similar bonds being broken and made - same number of each type of bond being broken and made	(1)	Allow $\mathrm{O}-\mathrm{H}$ and $\mathrm{C}-\mathrm{O}$ bonds being broken and made Allow the same bond being broken and made Allow C-OH I gnore $\mathrm{C}-\mathrm{O}-\mathrm{H}$ and COH Ignore CO without the bond shown Award 2 marks for a complete list of the bonds being broken and made e.g. Bonds broken and made are $1 \times \mathrm{C}-\mathrm{O}$ and $1 \times \mathrm{O}-\mathrm{H}$ scores 2 Allow ester link as C-O If no other mark is scored award 1 mark for $1 \mathrm{O}-\mathrm{H}$ bond is broken and made Or $1 \mathrm{C}-\mathrm{O}$ bond is broken and made If no other mark is scored allow the energy required to break the bonds is similar to the energy released making the bonds for (1)	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 1 (b) (i)}$	• methanoic acid	All three correct scores (2) Any two correct scores (1)	(2)
	• (concentrated) sulfuric acid	Allow hydrochloric acid $/ \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{HCl}$ Ignore H^{+} Ignore (aq) after formulae Ignore hydrogen chloride in words	
Allow methylpropan-1-ol Allow 2-methyl-1-propanol Allow methyl-1-propanol Do not award 2-methylpropanol			

Question Number	Answer	Additional Guidance	Mark
21(b)(ii)	Any one advantage: - no heat required / works at room temperature - so reduces energy cost or - no catalyst required - reducing product purification costs / making purification easier / no need to recover catalyst or - reaction is not an equilibrium / reaction goes to completion - so produces a higher yield Any one disadvantage: - hydrogen chloride produced is acidic / corrosive - corrosion resistant plant/equipment required (which is more expensive) or - HCl is toxic - use a fume cupboard / clean exhaust gases / capture the gas (for sale)	- Accept the reaction is (much) faster - so no energy required I gnore just lower cost I gnore more product Allow reactants are not wasted Ignore reference to atom economy	(4)

(Total for Question 21 = 12 marks)
(Total for Section B = 50 marks)

Section C

Question Number	Answer	Additional Guidance	Mark
22(a)	- states or uses equation - calculate S^{\ominus} products	$\begin{align*} \Delta S_{\text {system }}^{\ominus} & =S_{\text {products }}^{\ominus}-S_{\text {reactants }}^{\ominus} \tag{1}\\ -98.0 & =S_{\text {products }}^{\ominus}-((0.5 \times 192)+(1.5 \times 131)) \\ S^{\ominus}{ }_{\text {products }} & =292.5-98 \\ S^{\ominus}{ }_{\text {products }} & =(+) 194.5 / 195\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right) \end{align*}$ If units are given they must be correct Allow TE on incorrect $S_{\text {reactants }}$ Comment Correct answer with no working scores (2) $\mathrm{S}^{\text {products }}=63.5$ scores $\max (1)$ S^{\oplus} products $=225$ scores $\max (1)$	(2)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (c) (i)}$	An answer that makes reference to the following points: - uses the line or points from the data to calculate the gradient and units	Example of calculation	(1)
		Gradient $=\frac{8.27 \times 10^{-2}--0.76 \times 10^{-2}}{4.00 \times 10^{-3}-2.00 \times 10^{-3}}$	

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (c) (i i)}$	An answer that makes reference to the following points: - enthalpy change of reaction $/ \Delta_{r} \mathrm{H}$ (of the Haber process)	Allow $-\Delta_{r} \mathrm{H}$ Allow enthalpy change $/ \Delta \mathrm{H} /-\Delta \mathrm{H}$	(1)

Question Number	Answer	Additional Guidance	Mark
22(c)(iii)	An answer that makes reference to the following points: - value of T found either by reading from the graph the value of T when $\Delta \mathrm{S}_{\text {total }}=0$ or by calculation	$460 \text { (K) }$ Allow an answer between 440-480 $\begin{aligned} & =\frac{\text { answer to (c)(i) }}{98} \\ & =\frac{45150}{98}=460.71 / 460(\mathrm{~K}) \end{aligned}$ Or $\begin{aligned} & =\frac{- \text { answer to }(\mathrm{b})}{-98} \\ & =\frac{-45150}{-98}=460.71 / 460(\mathrm{~K}) \end{aligned}$ ALLOW TE on graph or on answer to (c)(i)	(1)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (d) (i)}$	total entropy, $\Delta \mathrm{S}=\mathrm{R} \ln \mathrm{K}$		(1)
	or		
	$\operatorname{lnK}=\Delta \mathrm{S} / \mathrm{R}$		
	or		
	$\mathrm{K}=\mathrm{e}^{\frac{\Delta S}{R}}$		

Question Number	Answer		Additional Guidance	Mark
22(d)(iii)	An answer that makes reference to the following points: Either - $\left(\Delta S_{\text {total }}\right.$ decreases because) $\Delta S_{\text {system }}($ and $\Delta H)$ do not change with temperature (significantly) - therefore $\Delta S_{\text {surroundings }}$ must decrease (so that ($\Delta \mathrm{S}_{\text {total }}$ decreases) - this is because $\Delta S_{\text {surroundings }}=-\Delta H / T$ (so as T increases $-\Delta H / T$ becomes less positive because ΔH is exothermic) Or - the reaction is exothermic and so increasing temperature shits the equilibrium to the left / towards the reactants - the value of K decreases - because $\Delta S_{\text {tota }}$ is proportional to $\mathrm{K} /$ $S_{\text {total }}=R \ln K$ the value of $\Delta S_{\text {total }}$ decreases	(1) (1) (1) (1) (1) (1)	Allow more negative / less positive Accept the backward reaction is favoured	(3)

Question Number	Answer	Additional Guidance	Mark
$\mathbf{2 2 (d) (i v)}$	-overall conversion to ammonia is increased by recycling unused reactants Allow remove the ammonia from the equilibrium / as it is formed Ignore references to catalysts, temperature and pressure	(1)	

Question Number	Answer		Additional Guidance	Mark
22(e)(i)	- formula of diammonium hydrogenphosphate - balanced equation	(1) (1)	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ $2 \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ Allow multiples Allow ions for the product Allow for M2 $\mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right) \mathrm{H}_{2} \mathrm{PO}_{4}$ Allow ions for the product No other TE Ignore state symbols even if incorrect	(2)

Question Number	Answer	Additional Guidance	Mark
22(e)(ii)	- $\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+}$ OR - $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$	Allow \rightarrow instead of \rightleftharpoons Do not award reactions reversed Allow $\mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}$ Allow \rightleftharpoons instead of \rightarrow Ignore state symbols even if incorrect	(1)

Question Number	Answer	Additional Guidance	Mark
22(e)(iii)	An answer that makes reference to the following points: - the mixture contains a large amount/ (large) reservoir of both ammonium ions and ammonia / of NH_{4}^{+}and NH_{3} Either - added H^{+}reacts with ammonia to form ammonium ions $/ \mathrm{H}^{+}+\mathrm{NH}_{3} \rightleftharpoons \mathrm{NH}_{4}^{+}$ Or - added H^{+}combines with OH^{-}ions in water to form water $/ \mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$ And ammonia reacts with water to produce OH^{-} ions $/ \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ - ratio of ammonium ions to ammonia hardly changes	Do not award incorrect formulae such as $\mathrm{NH}_{3}{ }^{-}$in M1 and M2 but allow TE in M3 Ignore comments about acid / base in relation to $\mathrm{NH}_{4}^{+} / \mathrm{NH}_{3}$ unless defined Allow \rightarrow instead of \rightleftharpoons Allow $\mathrm{H}_{3} \mathrm{O}^{+}$ Allow \rightarrow instead of \rightleftharpoons This marking point must include at least one ionic equation Allow remains constant Allow pH is unchanged / changes very little because added H^{+}removed and change in	(3)

